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We study a parametrically driven Ginzburg-Landau equation model with nonlinear management. The system
is made of laterally coupled long active waveguides placed along a circumference. Stationary solutions of three
kinds are found: periodic Ising states and two types of Bloch states, staggered and unstaggered. The stability
of these states is investigated analytically and numerically. The nonlinear dynamics of the Bloch states are
described by a complex Ginzburg-Landau equation with linear and nonlinear parametric driving. The switching
between the staggered and unstaggered Bloch states under the action of direct ac forces is shown.
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I. INTRODUCTION AND MODEL

The parametrically driven Ginzburg-Landau �GL� equa-
tion for the complex order parameter ��r� , t�,

�t� = �� + i��� + �b + ib���2� − �c + ic�����2� + ��*,

�1�

is one of the generic equations of condensed matter physics
�1�. It describes a large variety of nonlinear physical and
chemical systems, such as surface waves in viscous liquids
�2,3�, parametrically driven chains of coupled nonlinear os-
cillators �4,5�, optical parametric oscillators �6,7�, vectorial
Kerr-cavity solitons �8�, dynamic phase transitions in
uniaxial �9,10� and easy plane �11,12� Heisenberg ferromag-
nets, and light-sensitive Belousov-Zhabotinsky reactions
�13,14�.

In Eq. �1� ��0���0� accounts for linear gain �loss�, � is
the detuning parameter, �= ��x ,�y ,�z� ��u stands for � /�u
�u=x ,y ,z , t��. The parameter b�b�� is the diffusion �disper-
sion� coefficient; the coefficients c and c� characterize non-
linear effects in the system: the saturation effect and nonlin-
ear frequency shift, respectively. The last term in Eq. �1�
describes a parametric pump with the forcing amplitude �.

Recent advances in microstructure technology have made
it possible to fabricate various dispersion- and nonlinearity-
managed systems where the charge and energy transport can
be effectively designed and controlled �15�. Examples are
nonlinear photonic band-gap materials, periodic nonlinear
superlattices �16�, photonic crystals with embedded defect
structures such as microcavities, waveguides, and waveguide
bends �17,18�, optical fibers with periodically sign-
alternating group velocity �19�, and dispersion management
of matter waves by utilizing an optical dipole potential acting
as a one-dimensional periodic waveguide �20�. Nonlinearity
management was originally proposed as a tool to support the
propagation of intense optical beams in layered Kerr media
�21–23�. A stabilization of the beam through nonlinearity
management in layered Kerr media consisting of glass and
air was experimentally demonstrated �24�. Nonlinearity man-

agement was also used to avoid collapse in Bose-Einstein
condensates �25,26�.

Quite recently numerical and experimental investigations
of phase-locked multicore fiber lasers showed that by using a
special design with two types of active cores one can achieve
a generation of spatially flat supermode where all active
cores work in phase �27�. Linearly coupled GL equations
provide a model for such a type of ring lasers where the
active cores are evanescently coupled. Various types of lo-
calized states and their stability in dissipative nonlinear me-
dia based on linearly coupled GL equations are intensively
studied in literature. The main attention was paid to the case
of nonparametrically driven two linearly coupled GL equa-
tions �28–32� �see also a very comprehensive review paper
�33�� where it was shown that by using a dual-core optical
fiber with linear gain in an active core and linear loss in the
passive �idle� core, one can produce stable pulses in the sys-
tem. Localized states in a triangular set of linearly coupled
cubic-quintic GL equations were considered recently in �34�
where stability regions for various types of localized pat-
terns, including stationary and breathing triangular vortices,
were found.

In the present work, we consider a parametrically driven
cubic GL equation model with nonlinearity management.
The medium consists of L alternating waveguides: active and
idle ones, with gain and nonlinearity in the active waveguide
and loss in the idle waveguides �Fig. 1�. The system under
consideration is described by the equation

�i�t��r�,t� = �2�s
2� + �id

2 �z
2� − �i� + ���a

2 − �id
2 ��z

2�

− ��a − �i��t� + F��,�*���
n

Hn�s� , �2�

where

Hn�s� = �1 if �s − 	n� �
w

2
,

0 otherwise
�

is the structure function, s is the arclength along the circum-
ference, w is the width of the active waveguide �we will also
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use the term “window” for the active waveguide� and 	�	

w� is the distance between the centers of the active
waveguides. Thus width of the idle region is �s=	−w. In
Eq. �2� �i��a� is the relaxation time in the idle �active� region,
�id=	bid+ ibid� ��a=	ba+ iba�� is the complex longitudinal co-
herence length in the idle �active� region, �=	b+ ib� is the
complex transversal coherence length which we assume to be
the same in the idle and active regions, and the function

F��,�*� = ��a + �i�� + ��* − �c + ic�����2� �3�

gives gain, parametric driving, and nonlinear damping in the
active region. Note that the nonlinear dynamics which is
governed by the one-dimensional �1D� cubic parametrically
driven GL equation �2� with spatially independent coeffi-
cients �i.e., Eq. �1� with b�=c�=0,�
�x� was studied in
detail in Refs. �9,11,12,35–41� for domain walls and for 1D
and 2D bright solitons in Refs. �42–44�. It was shown that
there are two kinds of domain walls, namely, the so-called
Ising and Bloch walls. In the domain wall of the first kind
only one component �real or imaginary� of the complex am-
plitude ��x , t� is active, while in the domain wall of the
second kind both are active. The stability issue of these non-
linear excitations was clarified in Refs. �37,38,42,43�. The
aim of this work is to investigate features which acquire the
nonlinear excitations in the parametrically driven complex
GL equation model with nonlinear management.

The rest of the paper is organized as follows. In Sec. II,
we present a pseudodifferential form of the Ginzburg-Landau
equation and consider how the nonlocality effects influence
the profile and stability of the Ising domain walls. We also
give a systematic derivation of the tight-binding approach in
which the dynamics is governed by a system of L linearly
coupled one-dimensional GL equations. We assume that the
active waveguides are placed along a circumference and con-
sider the stationary states of the system. We show that in
addition to periodic Ising states there exist two types of
Bloch states: staggered and unstaggered ones. We present
also a linear stability analysis of the periodic Ising states. In
Sec. III we compare our analytical results to results obtained
directly by numerical simulations. In Sec. IV we discuss
weakly nonlinear dynamics of the periodic Bloch states. In
Sec. V we consider the switching of the Bloch state chirality
under the action of an external ac field. Section VI presents
some concluding remarks.

II. THEORETICAL ANALYSIS

A. Pseudodifferential form of the Ginzburg-Landau equation

The solution of Eq. �2� in the space domain of the super-
lattice requires extensive calculations. However, in the case
of very narrow active regions one can significantly simplify
the problem because in most of the domain �except at s
� �n	− w

2 ,n	+ w
2 �, n=0, �1, �2, . . .� the system obeys lin-

ear equations. These equations can be solved in the striped
idle regions and connected to the solution in the narrow ac-
tive waveguides. For the sake of simplicity we will neglect
the memory effects and assume �i→0 �these effects are dis-
cussed briefly in Appendix A�. Elimination of the waves in
the linear media described in Appendix A leads to the fol-
lowing equations for the field ��s ,z , t� at the active
waveguides: �n�z , t�
��	n ,z , t�,

�a�t�n�z,t� = �a
2�z

2�n�z,t� + �a�n�z,t� + ��
n
*�z,t�

− ��n�z,t��2�n�z,t� −
2�̂

w tanh�̂d�
�n�z,t�

+
�̂

w sinh�̂d�
��n+1�z,t� + �n−1�z,t�� ,

n = 0, � 1, � 2, . . . , �4�

where d= �	−w� /� is the width of the idle region measured
in units of the coherence length �, and

̂ 
 	− �id
2 �z

2 + �i �5�

is the pseudodifferential operator defined as

̂��k,t� 

1

2�
�

−�

�

dze−ikz	− �id
2 �z

2 + �i��z,t�

= 	�id
2 k2 + �i�̄�k,t� . �6�

Thus, the dynamics of the system is described by the set of
pseudodifferential or, in other words, by nonlocal in time and
space equations. The nonlocal character of the active wave-
guide dynamics is due to the existence of two pathways for
the energy transfer: directly along the active waveguide �the
first term on the right-hand side of Eq. �4�� and through the
idle region �the last two terms on the right-hand side of Eq.
�4��.

One of the physically reasonable excitation patterns is the
configuration where the complex amplitudes are the same in
all active waveguides, i.e.,

�n�z,t� = ��z,t� . �7�

For this excitation pattern the function of the complex am-
plitude ��z , t� satisfies the equation

x

z

y n
n�1

n�1

FIG. 1. �Color online� Schematic view of the system with non-
linearity management. The active region is concentrated in cylin-
ders N=24, the blank part between cylinders represents the passive
�idle� medium.

YU. B. GAIDIDEI AND P. L. CHRISTIANSEN PHYSICAL REVIEW E 78, 026610 �2008�

026610-2



�a�t��z,t� = �a
2�z

2��z,t� + �a��z,t� + ��*�z,t�

− ���z,t��2��z,t� −
2�

w

��
−�

�

G�z − z���− �id
2 �z�

2 + �i���z�,t�dz�,

�8�

where the kernel G�z� has the form

G�z� =
1

2�
�

−�

�

dze−ikz
tanh�	�id

2 k2 + �id/2�
	�id

2 k2 + �i

�
4�

�id

exp�− 	�i + 1/d2�z�/�id�
	�i + 1/d2

. �9�

Equation �8� has the same structure as the complex GL equa-
tion with nonlocal coupling derived in �45� as a reduced
form of a universal class of reaction -diffusion systems near
the Hopf bifurcation point.

When the sign of the complex amplitudes in the active
waveguides alternates,

�n�z,t� = �− 1�n��z,t�; �10�

the complex amplitude ��z , t� satisfies the same equation as
Eq. �8�, but the expression for the kernel G�z� has now the
form

G�z� =
1

2�
�

−�

�

dze−ikz
coth�	�id

2 k2 + �id/2�
	�id

2 k2 + �i

�
4�

�id

exp�− 	�i + 1/d2�z�/�id�
	�i + 1/d2

. �11�

In this case Eqs. �8� and �11� have the same structure as the
nonlocal complex Ginzburg-Landau equation derived for
electrochemical systems with migration coupling �46�.

In this paper we assume that b�=ba�=bid� =c�=0, c=1
which means that all coherence lengths �, �a, and �id are real
and we rescaled the complex amplitude � such that the co-
efficient in front of the nonlinear term is equal to unity. The
set of equations �4� is still very complicated. Therefore we
consider two more simple excitation distribution patterns: �i�
a spatially uniform excitation distribution along the circum-
ference and �ii� a spatially uniform distribution along the
longitudinal coordinate.

B. Ising domain walls in a system with long-range dispersion

In this section we consider how the nonlocality effects
influence the profile and stability of the Ising domain walls.
We will consider a spatially uniform along the circumference
excitation pattern �see Eq. �7�� and neglect the memory ef-
fects ��i=0�. For the sake of simplicity we assume that the
excitation energy propagates mainly in the idle region ��a
=0� and that the excitations have an infinite lifetime in it
��i=0�. Considering the systems with small distances be-
tween active waveguides d�1, one can use a Padé approxi-

mation of degree �2,2� �47� for the operator ̂ tanh�̂d /2�
with respect to the variable ̂d and obtain instead of Eq. �8�

�i�tX = �i
2 �z

2

1 − r2�i
2�z

2X + ��a + ��X − �X2 + Y2�X ,

�i�tY = �i
2 �z

2

1 − r2�i
2�z

2Y + ��a − ��Y − �X2 + Y2�Y , �12�

where

X�z,t� = Re ��z,t�, Y�z,t� = Im ��z,t� , �13�

and the parameter r=w / �12�d� controls the nonlocal effects
in the system. The quantity r�i is the radius of the long-range
dispersion interaction. When r→0 the nonlocal effects are
unimportant and the pseudodifferential equation �12� takes a
conventional differential form �1�.

1. Stationary solutions of the nonlocal Ginzburg-Landau
equation

It is well known �35� that in the local case �r=0� there
exist two types of stationary ��t=0� spatially inhomogeneous
solutions of Eqs. �12�: the Ising domain walls

X = � 	�a + � tanh	�a + �

2

z

�i
�, Y = 0 �14�

and the Bloch domain walls

X = � 	�a + � tanh	2�
z

�i
� , �15�

Y = � 	�a − 3� sech	2�
z

�i
� .

In the general case of nonlocal dispersion �r�0� the static
Ising domain walls are described by the equation

�i
2 �z

2

1 − r2�i
2�z

2X + ��a + ��X − X3 = 0. �16�

Acting on Eq. �16� by the operator 1−r2�i
2�z

2, we obtain the
equation

�i
2�z

2��1 − r2��a + �� + 3r2X2��zX� + ��a + ��X − X3 = 0,

�17�

which under the boundary conditions X→�	�a+��z
→��� has the solution

	1 + 2��a + ��r2 arctanh	1 + 2��a + ��r2 X
	�a + � + 2r2X2�

−
3r	�a + �

	2
arcsinh�	2rX� =

z

�i

	�a + �

2
. �18�

Looking at Eq. �18� one can see that near the center of the
domain wall where X is small, �zX��1−��−1/2 where the
notation �= ��a+��r2 is introduced. It means that the slope
of the domain wall becomes vertical for �=1 �see Fig. 2�. If
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��1 the slope of the domain wall assumes negative values
and the solution �18� becomes S-shaped �multivalued�. A
similar situation was observed in Ref. �48� for the case of
kinks in the sine-Gordon model with Kac-Baker long-range
interactions. It was shown in Ref. �48� that at �→1 the
frequency of an internal shape mode of the kink goes to zero
and the kink loses its stability.

2. Linear stability of the Ising domain walls in the nonlocal
Ginzburg-Landau equation model

The Ising walls �14� become unstable when �a
�cr

3� �9,36� and they bifurcate into Bloch walls. It is of
interest therefore to clarify how the nonlocality of the equa-
tion influences the Ising-Bloch transition.

To investigate the stability of the Ising state �18� to small
perturbations we use the rescaled variables

��z,t� 
 X�z,t� + iY�z,t� = 	�a + ��X + u�z̃, t̃� + iv�z̃, t̃�� ,

X =
X

	�a + �
, t̃ = ��a + ��

t

�i
, z̃ =	�a + �

2

z

�i
, �19�

where the function X�z� is given by Eq. �18� and assuming
that the linear perturbation depends exponentially on time,

u�z̃, t̃� = U�z̃�e�t̃, v�z̃, t̃� = V�z̃�e�t̃, �20�

we arrive at an eigenvalue problem

�z̃
2��1 + ��� − 1 + 3X2��U� − 6X2U = 2�� − 1�U , �21�

�z̃
2��1 + ��� − q + X2��V� − 2X2V = 2�� − q�V , �22�

where q= ��a−�� / ��a+��. The Ising state is stable provided
that the set of Eqs. �21� and �22�, has no positive eigenvalue.
For systems with short-range dispersion �r→0� Eqs. �21�
and �22�, reduce to

��
2U − 6 tanh2 �U = 2�� − 1�U , �23�

��
2V − 2 tanh2 �V = 2�� − q�V . �24�

Their analysis showed �37� that besides the neutral mode U
=sech2 �, V=0 with �=0, which is due to the translational
symmetry of the system, there exists a mode U=0, V

=sech � with �0= ��a−3�� / ��a+�� which governs the
Ising-Bloch transition. The Ising-Bloch transition in such
systems occurs when �a
3�.

The nonlocal model under consideration is translational
invariant and therefore the set of Eqs. �21� and �22�, also has
the neutral mode U=�z̃X, V=0 with �=0. However it was
impossible to find the exact eigenfunction and the eigenvalue
for Eq. �22� which governs the Ising-Bloch transition in the
nonlocal case. Let us consider this problem perturbatively.
Taking into account that the function X is given by Eq. �18�
in an implicit form it is convenient to change the indepen-
dent variable from z̃ to X and as a result instead of Eq. �22�
we obtain for the function

W�X� =
1 + ��� + X2 − q�

	C�X�
V , �25�

where

C�X� =
1 − ��1 − 3X2�

�1 − X2�	1 + 2�X2
, �26�

an equation in the form

d2

dX2W + U�X�W = 0, �27�

where

U�X� = 2
q − � − X2

1 + ��� + X2 − q�
C�X� −

1

4
	C�X�

d2

dX2 1

	C�X�� .

�28�

In the local limit when �=0, Eq. �27� reduces to

d2

dX2W + U0W = 0,

U0 =
1 + 2�q − � − X2�

�1 − X2�2 . �29�

It is straightforward to see that Eq. �29� has the eigenvalue
�0 with the eigenfunction

W0 = 1 − X2, �30�

which corresponds to sech�z̃� in terms of the original spatial
variable. Considering the difference U−U0 as a perturbation,
we obtain that in the first order perturbation theory the ei-
genvalue is

� = q −
1

2
−

19

30
� + O��2� . �31�

Thus in the weakly nonlocal Ginzburg-Landau equation
model the Ising wall loses its stability for

�a � �cr 
 3��1 + 6.7�r2� .

This inequality shows that in the nonlocal case the threshold
value of the gain �cr increases as the radius of the long-range
interaction r increases.

-2 -1 1 2 3
z

-1

-0.5

0.5

1

X

FIG. 2. The Ising domain wall profile for different values of the
radius of the nonlocal dispersion: the subcritical case r	�a+�
=0.1 �solid line�, the critical case r	�a+�=1 �dashed line�, and the
supercritical case r	�a+�=1.5 �dotted line�.
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C. Periodic Ising and Bloch domain wall states

We will consider the system with a strong damping in the
idle area, �i�1. In this case one can neglect both the
memory effects and effects of long-range coupling. Formally
it means that the derivatives in the operator ̂ may be omitted
and instead of Eqs. �4� we obtain the simpler set of equations

�a�t�n�z,t� = �a
2�z

2�n�z,t� + ��n�z,t� + ��
n
*�z,t�

− ��n�z,t��2�n�z,t� + J��n+1�z,t� + �n−1�z,t�

− 2�n�z,t�� ,

n = 0, � 1, � 2, . . . , �32�

which may by called a discrete-continuum GL equation.
Here

J =
�	�i

w sinh�	�id�

gives an effective coupling between fibers and the parameter

� = �a −
�	�i

w
tanh	�id

2
�

gives an effective gain coefficient in the active area. The
strong damping of excitations inside the idle region de-
creases the gain rate and can even completely kill the gain
effects. In what follows we will assume that the renormalized
gain rate � is positive. Finally, we consider a necklace-
shaped fiber set, consisting of L active cores placed along a
circumference �see Fig. 1�. In other words, we will consider
the Ginzbirg-Landau equation model �32� on a cylinder,

�n�z,t� = �n+L�z,t�, n = 1 . . . L, − �� z �� . �33�

Equations �32� and �33� can be presented in a gradient form,

�a�t�n = −
�F
��

n
* , �34�

or equivalently,

�a�tXn = −
�F
�Xn

, �a�tYn = −
�F
�Yn

, �35�

where Xn=Re �n, Yn=Im �n, and the energy functional F is
given by the expression

F =
1

2
�

−�

�

dz�
n=1

L ��a
2��zXn�2 + �a

2��zYn�2 + J�Xn+1 − Xn�2

+ J�Yn+1 − Yn�2 − �� + ��Xn
2 − �� − ��Yn

2 +
1

2
�Xn

2

+ Yn
2�2�dx . �36�

In the case when the characteristic size of excitation is
much larger then the lattice spacing one can replace �n�z , t�
by the function ��s ,z , t� of the arclength s, which is the
continuum analog of n. Using the Euler-McLaurin formula
�49� from Eq. �36� we obtain

F =
1

2
�

−�

�

dz�
0

L

ds��a
2��zX�2 + �a

2��zY�2 + J��sX�2 + J��sY�2

− �� + ��X2 − �� − ��Y2 +
1

2
�X2 + Y2�2� . �37�

In the continuum approach the dynamic of the system is
governed by the equations

�a�tX = �a
2�z

2X + J�s
2X − �X2 + Y2�X + �� + ��X ,

�a�tY = �a
2�z

2Y + J�s
2Y − �X2 + Y2�Y + �� − ��Y , �38�

which we will solve under the boundary conditions

X�s + L,z,t� = X�s,z,t�, Y�s + L,z,t� = Y�s,z,t� ,

�z�X�z→�� = 0, �z�Y�z→�� = 0. �39�

1. Stationary states

The spatially uniform in the longitudinal z-direction sta-
tionary solutions of Eqs. �38� satisfy

J�s
2X − �X2 + Y2�X + �� + ��X = 0,

J�s
2Y − �X2 + Y2�Y + �� − ��Y = 0. �40�

Let us consider now the above parametric GL equation
�40� under the periodic boundary conditions �39�. It is a
straightforward task to find that there are three types of non-
trivial stationary spatially imhomogeneous solutions:

�i� Periodic Ising states.

XI�s� =	 2m

1 + m
�� + ��sn	 � + �

�1 + m�J
s�, Y = 0,

�41�

here �and in what follows� pq�x�
 pq�x �m� �p ,q=c,s ,d ,n�
is a Jacobian elliptic function with modulus m �49�. From the
boundary condition �39� we find that the modulus m is de-
termined by the equation

� + � = �1 + m�J
16K2

L2 j2, �42�

where K is the elliptic integral of the first kind �49� and j is
an integer. The solution �41� exists for �+�
4�2J /L2. In
the limit of infinite domain when m→1 the solution �41�
reduces to the Ising-wall profile �14�. The finite domain for
the order parameter profile is of the form of 2j Ising domain
walls �Fig. 3�.

�ii� Periodic Bloch states. In the case of finite domain
there are two kinds of Bloch states: in-phase states and stag-
gered states.

The in-phase states are
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Xd = 	m�� + 3� − 2�m�sn	2�

J
s� ,

Yd = 	� − � − 2�mdn	2�

J
s� , �43�

with the modulus m given by the equation

� = J
8K2

L2 j2. �44�

The staggered states are determined by the expression

Xc =	� + 3� −
2�

m
sn	2�

mJ
s� ,

Yc =	� − � −
2�

m
cn	2�

mJ
s� . �45�

Here the modulus m is determined by the equation

� = J
8mK2

L2 j2. �46�

Notice that for an infinite system �L→�� when m→1 the
solutions �45� and �43� coalesce and reduce to the Bloch
domain wall �15�. However, for finite domains the solutions
�45� and �43� are qualitatively different �see Figs. 4 and 5�.
This difference can be clearly identified by using a chirality
density defined as �50�

��s� = Y�sX − X�sY , �47�

and a mean chirality defined as

�̄ = �
0

L

��s�ds . �48�

The chirality �=0 for Ising walls �14� and ��0 for Bloch
walls �15�. In the case of finite domains the chirality vanishes
for periodic Ising states �41� whereas the chirality density for
the staggered and in-phase Bloch periodic solutions is given
by the expressions

�c =	2�

mJ
� + 3� −

2�

m
�� − � −

2�

m
�dn	2�

mJ
s�

�49�

and

�d =	2�

J
	m�� + 3� − 2�m��� − � − 2�m�cn	2�

J
s� ,

�50�

respectively. Thus, both type of Bloch solutions have nonva-
nishing chirality densities. However, for the in-phase Bloch
states the chirality density �d is an alternating-sign function
while the chirality density �c for the staggered Bloch states
does not change sign. Consequently the mean chirality �̄
=0 for in-phase Bloch states and �̄�0 for staggered Bloch
states.

2. Linear stability of the Ising periodic states

To study the dynamics of the periodic Ising and Bloch
states we use an approach similar to the approach which was
developed in �37,38,42,43� for the case of infinite size sys-
tems. It is convenient to use the scaled variables

� = s	 � + �

�1 + m�J
, � =

z

�a

	� + �

1 + m
, � = t

� + �

1 + m
�51�

and present the solution of Eq. �1� in the form

10 20 30 40 50 60
Arclength

�1.5

�1.0

�0.5

0.5

1.0

1.5

X

FIG. 3. �Color online� Wall profiles for periodic Ising states ��
=1, �=1, j=2�.
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FIG. 4. �Color online� Wall profiles for staggered periodic Bloch
states. The real �solid line� and imaginary �dashed line� parts of the
complex amplitude are plotted for �=2, �=0.35, j=2.
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FIG. 5. �Color online� Wall profiles for unstaggered periodic
Bloch states. The real �solid line� and imaginary �dashed line� parts
of the complex amplitude are plotted for �=2, �=0.35, j=2.
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� =	2m�� + ��
1 + m

�sn � + u��,�,�� + iv��,�,��� . �52�

The real functions u�� ,� ,�� and v�� ,� ,�� satisfy the equa-
tions

��� − ��
2�q� = − Ĥq� + N� , �53�

where q� = �u ,v�T,

Ĥ = Ĥ2 − 1 − m 0

0 Ĥ1 − 
� , �54�

where the operator Ĥl�l=1,2� has the form

Ĥl = − ��
2 + l�l + 1�m sn2 � , �55�

the vector N� = �Nu ,Nv�T with

Nu = − 2m��3u2 + v2�sn � + uv2 + u3� ,

Nv = − 2m�2uv sn � + u2v + v3� �56�

represents the nonlinear terms of the Ginzburg-Landau equa-
tion, and the notation = �1+m���−�� / ��+�� is used.

To investigate the stability of the Ising state �41� to small
perturbations we linearize Eqs. �53� �i.e., we neglect the non-
linear terms Nu and Nv� and assuming that the linear pertur-
bation depends exponentially on time and the longitudinal
variable �,

q���,�,�� = Q� ���e��+ip�,

Q� ��� = „U���,V���… , �57�

we arrive at an eigenvalue problem

− ĤQ� = �Q� , �58�

where �=�+ p2. The eigenvalue problem �58� splits in two
separate one-dimensional Schrödinger equations with a po-
tential U���= l�l+1�m sn2���. They are the Lamé equations
�51�.

For an infinite size system �L→�� when m→1 Eqs. �58�
reduce to Eqs. �23� and �24�. For periodic systems �i.e., for
general values of m� Eqs. �58� and �55� describe a quantum
particle in the potential U��� with a period 2K. The eigen-
functions � j,k and eigenenergies Ej�k� for the Hamiltonian
�55� are determined by the equation

− ��
2� + 	�	 + 1�m sn2���� = E� . �59�

The eigenfunctions are the Bloch wave functions � j,k
�l����

=eik�� j,k
�l���� where � j,k

�l���� has the periodicity of the poten-
tial; k is the wave number �momentum� and j�j=0,1 ,	 . . . �
denotes the energy band. The eigenenergies lie within 	+1
allowed bands separated by 	 gaps. There are 2	+1 eigen-
functions associated to the boundaries of the allowed energy
bands: the so-called edge states. For 	=1 there are two en-
ergy bands given by

E0 � E � Ẽ0, E 
 E1, �60�

with the edge energies given by E0=m, Ẽ0=1, E1=1+m. The
corresponding edge states, i.e., the states from the set � j,k

�1����
with the wave number k at the edges of the Brillouin zone
�k=0 and k=� /2K� are �52,53�

�0
�1� = dn �, �̃0

�1� = cn �, �1 = sn � . �61�

For 	=2 there are three energy bands

E0 � E � Ẽ0, E1 � E � Ẽ1, E 
 E2, �62�

with

E0 = 2f−�m�, Ẽ0 = 1 + m, E1 = 1 + 4m, Ẽ1 = 4 + m ,

E2 = 2f+�m� , �63�

where f��m�=1+m�	1−m+m2. The edge states which
correspond to the lowest energy band are �52,53�

�0
�2� = − m sn2��� + f+�m�/3, �̃0

�2� = cn � dn � . �64�

It follows from Eqs. �59�, �62�, and �63� that the eigenvalue
problem given by Eqs. �58� possesses eigenvectors

Q� = „�0,k
�2����,0…T �65�

for which the eigenvalues � lie within the interval

0 ��� − 1 − m + 2	1 − m + m2. �66�

This means that in periodic systems the Ising states are al-
ways unstable with respect to excitation of the states �0,k

�2����.
However, from the practical point of view this instability is
important only for small size periodic systems. For large
enough systems �L�1� it is rather weak. Indeed, it follows
from Eq. �42� that for L / j�1

1 − m � 16 exp�−
L

2j
	� + �

2
� . �67�

Introducing Eq. �67� into Eq. �66�, we obtain that the char-
acteristic exponent � satisfies an inequality

�� 192 exp�−
L

j
	� + �

2
� . �68�

Assuming L=50, j=1, �+��1, from Eq. �68� we obtain
��10−13. The edge state ��̃0

�2� ,0�T is a neutral �Goldstone�
mode ��=0� of Eq. �58�. It follows from the translational
symmetry of the problem. The excitation of this mode results
in the motion of the Ising state along the system. The edge
state ��0

�2� ,0�T exists only in finite size systems. As it will be
shown below the excitation of this mode results in the for-
mation of a spatially uniform state. Note that when L→� the
width of the instability interval �66� decreases, the eigenval-
ues which correspond to the edge states �0 and �̃0 merge and
the edge states transform into the state sech2 � with a double
zero eigenvalue.

As it is seen from Eqs. �59� and �60� the eigenvalue prob-
lem given by Eqs. �58� also possesses eigenvectors
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Q� k = „0,�0,k
�1��z�…T �69�

with eigenvalues � belonging to the interval

m

� + �
�� − �c� ���

� − �d

� + �
, �70�

where the notations �d= �1+2m��, �c= �2+m�� /m are used.
It follows from Eq. �70� that for ���d all eigenvalues are
negative and the Ising state is stable with respect to the ex-
citation of the states �0,k

�1��z�. When �d����c the states with
small k have positive characteristic exponents � and they are
growing in time, while for the states with k close to the upper
edge of the Brillouin zone k�� /2K the characteristic expo-
nents are negative ���0�. Thus for these � the Ising state is
unstable with respect to the excitation of the states �0,k

�1��z�
with small wave number �dn-like� and a transition to the
in-phases Bloch state �43� takes place. When ���c all states
�69� have positive characteristic exponents. In this case the
Ising-Bloch transition leads to an appearance of either the
in-phase state �43� with the mean chirality �̄=0 or the stag-
gered state �45� with the mean chirality �̄�0. To establish
the relative stability of these states one should go beyond the
linear stability analysis which will be presented below.

III. NUMERICAL STUDIES

To check our results we have performed several numerical
studies. To this end we carried out the dynamical simulations
of the equations

�a�tXn = J�Xn+1 + Xn−1 − 2Xn� + �� + ��Xn − �Xn
2 + Yn

2�Xn,

�a�tYn = J�Yn+1 + Yn−1 − 2Yn� + �� − ��Yn − �Xn
2 + Yn

2�Yn

�71�

under the boundary conditions �33�. These are Eqs. �35� and
�36� which are written for the spatially uniform along z case.

First we checked the stability of periodic Ising states �41�
for systems of different size L. This was studied by solving
Eqs. �71� with the initial condition

Xn�0� = XI�s� + ���0
�2��s=n, Yn�0� = 0,

where XI�s� is the periodic Ising state �41� and �0
�2� is the

edge state �64� with respect to which the continuum theory
predicts instability of the Ising state �41�. The dynamics of
the Ising state for the set of parameters

�a = 1, J = 1, � = 1, � = 0.05, j = 1, � = 10−3,

and for two different sizes of the system L=12 and L=24 is
shown in Fig. 6. As it is seen from this figure in full agree-
ment with the results obtained in the previous section the
Ising state is unstable in small systems �for L=12 it trans-
forms to the spatially uniform state when t�300�, but it is a
very long-lived state when the size of the system is doubled:
in systems with L=24, even for t�105 the Ising state essen-
tially preserves its shape.

Considering the solutions to Eqs. �71� for the gain rate �
in the interval ���c where in accordance with the linear

stability analysis two types of the Bloch states coexist, we
found that for the same set of parameters the system evolves
either to a nonstaggered Bloch state or to a staggered one
depending on whether nonstaggered or staggered is the ini-
tial condition. A typical time evolution for ���c is shown in
Figs. 7–9. Here we used the set of parameters

�a = 1, J = 1, � = 1, � = 0.15, L = 60, �72�

and two different types of initial conditions,

Xn�0� = 10−3 cos
2�

L
n ,

10 15 20 n

-1

-0.5

0.5

1
X

4 6 8 1012n

-1

-0.5

0.5

1
X

FIG. 6. The top panel shows the time evolution of the Ising state
for the system with the number of sites L=12 for the time moments
t=0 �dashed line�, t=270 �dotted-dashed line�, t=300 �solid line�;
the bottom shows the evolution for L=24 for the time moments t
=0 �dashed line�, t=2000 �dotted-dashed line�, t=50 000 �solid
line�.

20

40

60

Arclength
20

40

60

Time

-1

0

1

X

20

40Arclength

FIG. 7. �Color online� The evolution of the real part of the
complex amplitude when the initial seed is given by Eq. �74�.
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Yn�0� = 10−31 − 0.1 cos2 2�

L
n� , �73�

and

Xn�0� = 10−3 cos
2�

L
n ,

Yn�0� = 10−3 sin
2�

L
n . �74�

The final shape of the X component of the field is almost the
same for both types of the initial conditions �73� and �74�. In
contrast to that the Y components are qualitatively different:
for the initial condition �73� the system evolves to a nonstag-
gered Bloch state �see Fig. 8� while for Eq. �74� it evolves to
a staggered Bloch state �see Fig. 9�.

For large systems the interval ��d, �c� where only non-
staggered Bloch states may exist is very narrow �for L=60 it
is �10−7�, but for small and medium sized systems it may be
sizable. We considered the time evolution of the system with
L=20 and �=0.15 when �d=0.43, �c=0.47 and found out
that in full agreement with the results of linear analysis for
�� ��d ,�c� only the nonstaggered Bloch states are stable.

IV. WEAKLY NONLINEAR DYNAMICS OF BLOCH
STATES

The aim of this section is to develop a weakly nonlinear
approach to the dynamics of the Bloch states. We will as-

sume that we are close to the Ising-Bloch transition and both
types of the Bloch states �45� and �43� may coexist.

We will search for solutions of Eqs. �53� of the form

q� = q�1 + q�2 + q�3 + ¯ , �75�

where q� j = �uj ,v j�T�� j �� is a small parameter�. The first
term q�1= �0,v1�T is a linear superposition of the critical
modes �0,k

�1�. It is given by the expression

v1 =� Ak�0,k
�1�dk , �76�

where Ak is the amplitudes of critical modes. Taking into
account that the density of critical modes diverges at the
edges of the band of critical modes �see Appendix B�, for
large systems �L�1�, one can approximate the term q�1 in
Eq. �76� as a linear combination of two edge states

v1 = A cn��� + B dn��� , �77�

where A=A��� ,�2�� and B=B��� ,�2�� are slowly varying
amplitudes of critical modes.

We assume that �i� supercriticality is small,

�� − �c�, �� − �d� = O��2�

and �ii� the size of the system is big, L�1, such that

�c − �d = 2�
1 − m2

m
= O��2� .

Inserting the expansions �75� and �77� into Eq. �53� and
using a standard technique of weakly nonlinear analysis �see
Appendix B for details� we obtain a system of equations for
the amplitudes A and B:

��A = ��
2A + �cA − A3 − 3AB2,

��B = ��
2B + �dB − B3 − 3A2B . �78�

Thus in a weakly nonlinear approximation the dynamics of
the Ginzburg-Landau model on a cylinder given by Eq. �38�
reduces to the dynamics of a driven one-dimensional
Ginzburg-Landau equation for the complex amplitude �=A
+ iB,

��� = −
�Fr

��*
�79�

with the energy functional

Fr = �
−�

�

d�������2 −
1

2
��c + �d����2 +

3

4
���4

−
1

2
��c − �d�Re��2� −

1

8
Re��4�� , �80�

which is a special case of the free energy functional with
biquadratic coupling between two order parameters consid-
ered a long time ago in �50�. In the reduced form the system
acquires an additional nonlinear parametric driving �the last
term in Eq. �80��. This driving is a result of the existence of
two types of Bloch states in the Ginzburg-Landau model on
a cylinder.
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FIG. 8. �Color online� The evolution of the imaginary part of the
complex amplitude when the initial seed is given by Eq. �73�.
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FIG. 9. �Color online� The evolution of the imaginary part of the
complex amplitude when the initial seed is given by Eq. �74�.
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V. SWITCHING OF BLOCH STATE CHIRALITY BY AN
EXTERNAL ac FIELD

Assuming that ��A=��B=0, we see from Eqs. �78� that
the dynamics of spatially uniform along the cylindrical z-axis
states is equivalent to the overdamped dynamics of a particle
moving in the two-dimensional potential

W = −
1

2
�cA

2 −
1

2
�dB2 +

1

4
�A4 + B4 + 6A2B2� . �81�

When ���c the bifurcation parameters �c and �d are posi-
tive. In this case the effective potential has four wells. Two
of them are situated at the points A= �	�c, B=0 and have
the energy WA=−�c

2 /4, two others are at the points A=0,
B= �	�d and have the energy WB=−�d

2 /4 �see Fig. 10�.
Two signs of the amplitude B correspond to two different
polarizations of the unstaggered Bloch state.

The shape of the effective potential �81� suggests we
study a possibility to control the chirality of the periodic
Bloch states by using an external driving. We investigated
this possibility by augmenting the free energy functional �36�
with the term

Wdr =
1

2�
n

�fne−i�t�n + c.c.�


 �
n

�fn cos��t�Xn + fn sin��t�Yn� , �82�

where fn is the amplitude �in general, spatially inhomoge-
neous� of the driving force and � is its frequency. In the
presence of the interaction �82� the equations for the critical
amplitudes take the form

��A = �cA − A3 − 3AB2 + fA sin��̄�� , �83�

��B = �dB − B3 − 3A2B + fB sin��̄�� , �84�

where �̄=� 1+�
�+m is a rescaled driving frequency and the no-

tations

fA =
1

4
�

0

4K

f���cn���d� ,

fB =
1

4
�

0

4K

f���dn���d� �85�

for effective amplitudes of the driving field are used.
In the case of a spatially homogeneous external field the

effective amplitude fA
0 and the driving force enters Eq.
�84� only. Assuming that initially the system is in the stag-
gered Bloch state, A�0��0, B�0�=0, we obtain that if the
frequency of the field �̄ is below some critical value there is
a switching to the in-phase Bloch state, while for high
enough frequencies the system stays in the staggered state
�see Fig. 11�. When the system initially is in the in-phase
Bloch state the chirality switching does not occur when a
spatially homogeneous field is applied �see Fig. 12�. How-
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W

FIG. 10. �Color online� Effective energy profile for the ampli-
tudes of staggered and unstaggered critical modes.
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FIG. 11. Phase portrait for a switching dynamics under the ac-
tion of spatially homogeneous ac field for �=1, �=0.15, fB=0.1,
and two different values of the driving frequency �=0.1 �top
panel�, �=0.25. Initially the system is in the in-phase Bloch state.
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ever, under the action of cosine-like external field when the
effective amplitude fA�0, a switching from the in-phase
Bloch state to the staggered one takes place.

To verify these analytical predictions we solved numeri-
cally the equations

�a�tXn = J�Xn+1 + Xn−1 − 2Xn� + �� + ��Xn − �Xn
2 + Yn

2�Xn

+ fn cos��t� ,

�a�tYn = J�Yn+1 + Yn−1 − 2Yn� + �� − ��Yn − �Xn
2 + Yn

2�Yn

+ fn sin��t� , �86�

which are discrete parametrically and directly driven
Ginzburg-Landau equations. We used the set of parameters
�72� and by using the initial conditions �74� we first allowed
the system to evolve to its stationary states without driving
�fn=0� and then we switched to the direct external driving.
The results of the simulations are shown in Figs. 13 and 14,
which were obtained for

fn = 0.1 sin2�

L
n�, � = 0.005.

In the same way by applying a spatially homogeneous exter-
nal driving with the same amplitude and frequency one can
achieve a switching from the staggered Bloch state to the
in-phase one.

VI. CONCLUSIONS

In this paper, we have discussed the dynamics of nonlin-
ear excitations in two-dimensional parametrically driven
Ginzburg-Landau equation models with nonlinearity man-
agement. We have considered a system of alternating active
and passive waveguides placed along a circumference. We
have derived a set of pseudodifferential equations, i.e., non-
local in space and time equations, which govern the nonlin-
ear dynamics in active waveguides. We have shown that the
nonlocality of the problem is of prime importance in the
systems where the excitations in passive regions are un-
damped and have a large coherence length. We found that in
addition to a usual Ising-Bloch instability the Ising domain
walls in systems with long-range dispersion experience in-
stability with respect to softening of a shape mode. In this
paper we have been mainly concerned with the case when
the damping in the idle regions is large. In this case the
dynamics is described by a set of L linearly coupled one-
dimensional Ginzburg-Landau equations. We investigated
the stationary solutions of this set of equations and their
stability. We have found that there are three kinds of station-
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B

FIG. 12. Phase portrait for a switching dynamics under the ac-
tion of spatially homogeneous ac field for �=1, �=0.15, fB=0.1,
and two different values of the driving frequency �=0.1 �top
panel�, �=0.25. Initially the system is in the staggered Bloch state.
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FIG. 13. Mean chirality switching from the in-phase Bloch state
to the staggered Bloch state under the action of the external driving
with the amplitude f =0.1 and the frequency �=0.005.
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FIG. 14. �Color online� The Bloch state evolution for the same
parameters as in Fig. 13.
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ary solutions. For the solutions of the first kind only one
component �real or imaginary� of the complex amplitude in
the active region is active. These are periodic Ising states. In
addition to them there exist two kinds of periodic solutions in
which both components of the complex amplitude are active:
staggered and unstaggered Bloch states. These two Bloch
states are characterized by different chirality density profiles:
the staggered states are characterized by a finite mean chiral-
ity, while in the unstaggered ones the mean chirality is zero.

The linear stability analysis showed that the Ising periodic
states are, strictly speaking, unstable. However, this instabil-
ity is important only for systems with few active
waveguides. For a large number of active waveguides L their
lifetime is exponentially big. When the gain rate in the active
regions is high the two types of the Bloch states coexist. The
weakly nonlinear analysis showed that the nonlinear dynam-
ics of the Bloch states is described by a complex Ginzburg-
Landau equation with linear and nonlinear parametric driv-
ing. It is shown that under the action of ac external field one
can switch between the staggered and unstaggered Bloch
states.
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APPENDIX A

In this appendix we derive the set of equations �4�–�6�.
We will follow the procedure which previously was devel-
oped for nonlinear Schrödinger-Kronig-Penney models �21�
and for a superlattice of Josephson junctions �54�. Using the
Fourier transform with respect to z and the Laplace transform
with respect to t �denoted by the overbar�

�̄�s,k,�� =
1

�2���−�

�

dz�
0

�

dt��s,z,t�e−ikz−�t, �A1�

one can represent Eq. �2� in the idle regions

	n +
w

2
� s � 	�n + 1� −

w

2
, n = 0, � 1, � 2, . . . ,

�A2�

in the form

��id
2 k2 + ��i + �i��̄�s,k,�� − �2�s

2�̄�s,k,�� = 0. �A3�

In the windows

�s − 	n� �
w

2
, n = 0, � 1, � 2, . . . , �A4�

the corresponding equation is

��a
2k2 + ��a��̄�s,k,�� = �2�s

2�̄�s,k,�� + F��,�*� . �A5�

The solution of Eq. �A3� in the interval �A2� has the form

�̄�s,k,�� = An�k,��e−s/� + Bn�k,��es/�, �A6�

where

 = 	�id
2 k2 + ��i + �i. �A7�

The condition that the phase � and its derivative �s� be
continuous at the interfaces between windows and idle re-
gions leads to the relations

Ane−�	n+�w/2��/� + Bne�	n+�w/2��/� = �̄w	n +
w

2
,k,�� ,

�A8a�

Ane−�	n+�w/2��/� − Bne�	n+�w/2��/� = −
L


�s�̄w��s,k,���s=	n+�w/2�,

�A8b�

where �̄w�s ,k ,�� is the solution of the window equation
�A5�. Let us integrate Eq. �A5� with respect to s over the nth
window. As a result we obtain

�s�̄w��s,k,���s=	n+�w/2� − �s�̄w��s,k,���s=	n−�w/2�

=
a

2

�2�
	n−w/2

	n+�w/2�

ds�̄w�k,�� −
1

�2�
	n−�w/2�

	n+�w/2�

dsF��,�*� = 0,

�A9�

where

a
2 = �a

2k2 + ��a + �i. �A10�

Taking into account the boundary conditions given by Eqs.
�A8a� and �A8b� we can represent Eq. �A9� in the form

�

sinh�d���̄w�n + 1�	 −
w

2
,k,�� + �̄w�n − 1�	 +

w

2
,k,���

−
�

tanh�d���̄wn	 +
w

2
,k,�� + �̄wn	 −

w

2
,k,���

= a
2�

	n−�w/2�

	n+�w/2�

ds�̄w�s,k,�� − �
	n−�w/2�

	n+�w/2�

dsF��,�*� , �A11�

where d= �	−w� /� is the width of the idle region measured
in terms of the coherence length �. In the limit of thin win-
dows one can neglect the variation of the window function
across the window,

�̄w�s,k,�� 
 �̄n�k,��, s � n	 −
w

2
,n	 +

w

2
� ,

n = 0, � 1, � 2, . . . �A12�

and obtain that the dynamics of the system is governed by
the set of equations
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�

sinh�d�
��̄n+1�k,�� + �̄n−1�k,��� −

2�

tanh�d�
�̄n�k,��

= �a
2w�̄n�k,�� − wF��,�*�n�k,�� , �A13�

where n=0, �1, �2, . . .. Using the inverse Fourier and
Laplace transforms we can represent Eqs. �A13� in real space
and time variables as follows:

�a�t�n�z,t� = �a
2�z

2�n�z,t� + �a�n�z,t� + ��
n
*�z,t�

− ��n�z,t��2�n�z,t� +
�̂

w sinh�̂d�
��n+1�z,t�

+ �n−1�z,t�� −
2�̂

w tanh�̂d�
�n�z,t� ,

n = 0, � 1, � 2, . . . , �A14�

where ̂
	−�id
2 �z

2+�i�t+�i is the pseudodifferential operator
defined as

̂��k,�� 

1

2�
�

−�

�

dz�
0

�

dte−ikz−�t	− �id
2 �z

2 + �i�t + �i��z,t�

= 	�id
2 k2 + �i� + �i�̄�k,�� . �A15�

When the complex amplitudes are the same in all active
waveguides,

�n�z,t� = ��z,t� , �A16�

the complex amplitude ��z , t� satisfies the equation

�a�t��z,t� = �a
2�z

2��z,t� + �a��z,t� + ��*�z,t�

− ���z,t��2��z,t� −
2�

w
̂ tanh�̂d/2���z,t� .

�A17�

The nonlocal character of the active area dynamics is clearly
seen if we consider the last term on the right-hand side of Eq.
�A17�. Taking into account the well-known expansion in a
series of simple fractions �55� and the definition �A15� of the
operator ̂, we can write

̂ tanh�̂d���z,t� = 4d�
n=1

�
̂2

̂2d2 + �2n − 1�2�2��z,t�

= �
−�

�

dz��
0

t

dt�K�z − z�,t − t���− �id
2 �z�

2

+ �i�t� + �i���z�,t�� , �A18�

where the kernel K�z−z� , t− t�� is given by the expression

K�z,t� =
2

�id
	 �

Didt
 2�0,e−4�2t/d2�i�exp�−

z2

4Didt
− �i

t

�i
� ,

�A19�

where Did=�id
2 /�i is the diffusion coefficient in the idle re-

gion, and  2�x ,q� is the Jacobi theta function �55�. The non-
local effects or, in other words, effects of long-range cou-

pling and long memory effects, are particularly well
pronounced in systems where in the idle region excitations
have a big diffusion coefficient Did and a long lifetime �i /�i.
In the limit �i→0 the memory effects in the idle region may
be neglected and

K�z − z�,t − t�� = 2��t − t��G�z − z�� �A20�

with the kernel G�z−z�� being determined by the expression

G�z − z�� =
4�

�id
�
n=1

�
exp�− 	�i + �2n − 1�2/d2�z − z��/�id�

	�i + �2n − 1�2/d2

�
4�

�id

exp�− 	�i + 1/d2�z − z��/�id�
	�i + 1/d2

. �A21�

When the distance between active waveguides increases
the interwaveguide coupling �the last term in the right-hand
side of Eqs. �4�� vanishes and the equation takes the form

�a�t��z,t� = �a
2�z

2��z,t� + �a��z,t� + ��*�z,t�

− ���z,t��2��z,t� −
2�

w
	− �id

2 �z
2 + �i�t + �i��z,t� .

�A22�

If the lifetime of excitations in the idle region is infinitely
long ��i→0�, Eq. �A22� reduces to the equation

�a�t��z,t� = �a
2�z

2��z,t� + �a��z,t� + ��*�z,t�

− ���z,t��2��z,t� −
2�

w
	− �id

2 �z
2 + �i�t��z,t� ,

�A23�

which belongs to the category of fractional GL equations
�56,57�. In the limit �i→0 the last term in the right-hand side
of Eq. �A23� can be expressed as a Hilbert transform of the
function �z� �58�, and by analogy with the case of the non-
linear Hilbert-Schrödinger equation introduced in Refs.
�21,59� may be called the Hilbert-Ginzburg-Landau equa-
tion.

APPENDIX B

The aim of this appendix is to develop a weakly nonlinear
approach to the dynamics of the Bloch states. We will as-
sume that we are close to the Ising-Bloch transition and both
types of the Bloch states �43� and �45� may coexist.

We will search for solutions of Eqs. �53� of the form

q� = q�1 + q�2 + q�3 + ¯ , �B1�

where q� j �� j �� is a small parameter�. The first term q�1

= �0,v1�T is a linear superposition of the critical modes �0,k
�1�.

It is given by the expression

v1 =� Ak�0,k
�1�dk , �B2�

where Ak is the amplitudes of critical modes.
We are now going to show that in large enough systems

the most important critical modes which govern the Ising-
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Bloch transition in periodic systems are the edge modes. The
vector q�1 from Eq. �B2� can be presented in the form

v1 =� Ak�0,k
�1�dk = �

E0

Ẽ0
!�E�f�E�dE , �B3�

where

!�E� =
dk

dE
�B4�

is the density of the critical modes. The function k�E� gives

the dispersion of critical modes, E0=m and Ẽ0=1 are the
edges of the band, and the abbreviation

f�E� = Ak�E��0,k�E�
�1� �B5�

is used. Using the dispersion relation for the lowest band of
the Lamé equation �55� with l=1 which was obtained in �53�,
one can obtain that the density of critical modes is given by
the expression

!�E� =
E − �E − E0�K

2K	�Ẽ0 − E��E − E0��E1 − E�
for E � �E0,Ẽ0� ,

�B6�

where E1=1+m. Thus, the density of states is singular at the

band edges E0 and Ẽ0. In large enough systems �L�1� the

bandwidth of the critical modes is small: Ẽ0−E0=1−m"1.

Assuming that the function f�E� is smooth, for E� �E0 , Ẽ0�
one can approximate it as follows:

f�E� � f�E0� +
E − E0

Ẽ0 − E0

�f�Ẽ0� − f�E0�� . �B7�

Inserting Eqs. �B6� and �B7� into Eq. �B3�, after small cal-
culations we obtain

v1 =
�

2K
f�E0� +

1

1 − m
E

K
�K� − E�� −

3 − m

3
K�

+ 2
�2 − m�

3
E���f�Ẽ0� − f�E0�� , �B8�

where E�=E�1−m�, K�=K�1−m�. For L�1, when m�1 it
reduces to

v1 =
�

4K
�f�E0� + f�Ẽ0�� . �B9�

Recalling the definition �B5�, one can conclude that in large
systems the main contribution to the first-order vector q�1 is
due to the edge states and this vector can be presented as
follows:

v1 = A cn��� + B dn��� , �B10�

where A=A��� ,�2�� and B=B��� ,�2�� are slowly varying
edge amplitudes �order parameters�.

We assume that �i� supercriticality is small,

�� − �c�, �� − �d� = O��2� ,

and �ii� the size of the system is big, L�1, such that

�c − �d = 2�
1 − m2

m
= O��2� .

Inserting the expansions �B1� and �B10� into Eq. �53� we
obtain

�1: Ĥ0q�1 = 0, �B11�

where Ĥ0
�Ĥ��=�d
,

�2: �Ĥ2 − 1 − m�u2 = 2mv1
2 sn��� , �B12�

�3: �− Ĥ2 + 1 + m�u2 = 0, �B13�

�− Ĥ1 + m�v3 = ��v1 − A�c cn��� − B�d dn��� + 4mv1u2 sn���

+ 2mv1
3, �B14�

where the operator Hl is given by Eq. �55� and the notations

�c = m
� − �c

� + �
,

�d =
� − �d

� + �
�B15�

are used. Taking into account that the homogeneous equation

�Ĥ2−1−m� g=0 has two linearly independent solutions of
the form

g1 = cn���dn��� ,

g2 = �1 − m − �1 + m�
E

K
�� + �dc��� + m2cd����sn���

− �1 + m�Z���m��g1 �B16�

where Z�� �m� is Jacobi’s zeta function �49�, it is straightfor-
ward to find that the solution of the second-order equation
�B12� is given by

u2��� =
2m

�1 − m�2�
0

�

�g1����g2���

− g1���g2�����v1
2����sn����d��. �B17�

The solvability conditions of the equation �B14� have the
form

�
0

4K

���v1 − ��
2v1 − A�c cn��� − B�d dn��� + 4mv1u2 sn���

+ 2mv1
3�dn���d� = 0, �B18�
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�
0

4K

���v1 − ��
2v1 − A�c cn��� − B�d dn��� + 4mv1u2 sn���

+ 2mv1
3�cn���d� = 0. �B19�

The first condition is because the function dn��� is a zero

mode for the operator Ĥ1−m. The second one follows from
the fact that the quantity

�
0

4K

cn����Ĥ1 − m�v3d� = �1 − m��
0

4K

cn���v3d� = O��5�

�B20�

and hence is of higher-order smallness than the integral in
the left-hand side of Eq. �B19�, which is O��3�. The solvabil-

ity conditions �B18� and �B19� give a system of equations
for the amplitudes A and B,

��A = ��
2A + �cA − A3 − 3AB2,

��B = ��
2B + �dB − B3 − 3A2B . �B21�

All other integrals which enter solvability conditions �B18�
and �B19� were evaluated in the limit m→1.
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